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Multicast Queueing Delay: Performance Limits and
Order-Optimality of Random Linear Coding

Randy Cogill,Member, IEEE, and Brooke Shrader,Member, IEEE

Abstract—In this work we analyze the average queue backlog
for transmission of a single multicast flow consisting ofM
destination nodes in a wireless network. In the model we consider,
the channel between every pair of nodes is an independent
identically distributed packet erasure channel. We first develop
a lower bound on the average queue backlog achievable by any
transmission strategy; for a single-hop multicast transmission,
our bound indicates that the queue size must scale as at least
Ω(ln(M)). Next, we generalize this result to a multihop network
and obtain a lower bound on the queue backlog as it relates to
the minimum-cut capacity of the network. We then analyze the
queue backlog for a strategy in which random linear coding is
performed over groups of packets in the queue at the source
node of a single-hop multicast. We develop an upper bound on
the average queue backlog for the packet-coding strategy to show
that the queue size for this strategy scales asO(ln(M)). Our
results demonstrate that in terms of the queue backlog for single-
hop multicast, the packet coding strategy is order-optimal with
respect to the number of receivers.

I. I NTRODUCTION

In this paper we analyze the size of the queue backlog for
a single multicast flow transmitted over a network with links
subject to packet erasures. A primary focus of our work is in
establishing performance limits that characterize the minimum
achievable expected queue length in the network. We also
provide a closed-form upper bound on the expected queue
length when a random linear coding scheme is applied for a
one-hop multicast flow.

The throughput for multicast transmissions in a wireless
network and the role of coding schemes in achieving good
performance has been addressed extensively in the past decade.
Random linear coding of packets in a multicast flow was
first introduced in [11], which provides a lower bound on the
probability that all multicast receivers are able to successfully
decode the message sent by the source and shows that this
scheme can outperform a randomized routing scheme. The
achievable multicast throughput in a wireless erasure network
is characterized with a minimum-cut representation in [9] and
linear network coding is shown to be sufficient for achieving
this result.

R. Cogill is with the Department of Systems and Information En-
gineering, University of Virginia, Charlottesville, VA, 22904 USA. E-
mail: rcogill@virginia.edu. B. Shrader is with the Massachusetts Institute
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While the delay performance of coding schemes has re-
ceived less attention than the throughput performance, signif-
icant progress has been made in previous work. The delay or
completion-time performance for one-hop multicast with link
erasures was first characterized in [10], which shows that a
block-based random linear coding scheme offers significant
delay improvements over packet scheduling strategies. The
work in [10] does not address queueing delay, but numerous
subsequent works do. In [12], the authors consider a network
with finite memory or buffers for storing packets and a scheme
for coding over packets that arrive through a random process
for a single unicast flow. They provide a framework for this
problem that allows for computation of the delay and queue
blocking/loss probability and demonstrate that packet coding
schemes can offer good throughput performance under the
constraint of limited memory for storing packets at intermedi-
ate nodes. A bulk-service queueing model for random linear
coding over a unicast flow is developed in [13] and numerical
results on the queueing delay demonstrate that by adapting
the code block size to the number of buffered packets, coding
schemes can offer good delay performance when the arrival
rate is small. The work in [7] provides analytical bounds on
the completion time and stable throughput for random linear
coding across multiple multicast flows; the results indicate that
although coding across flows requires unintended recipients
to decode packets, the coding strategy can provide larger
throughput than uncoded transmission. In contrast to the block-
based coding schemes considered in the works above, [14]
introduces an online or window-based coding scheme and
proposes a new packet acknowledgment strategy for random
linear coding based on acknowledging degrees of freedom
received. The authors also provide a queue-length analysis
for their policy and the queue size is shown to grow more
slowly with load factor than a baseline acknowledgment
strategy. Finally, while most works cited above address delay
performance for intra-flow coding, [1] considers coding across
flows and shows that significant delay penalties are incurred
for synchronized coding across flows, but asynchronous coding
of packets across flows can reduce the queueing delay.

Our work focuses on the multicast problem and differs from
previous work in the following ways. First, we provide a
lower bound on the minimum achievable queue length for
any packet transmission strategy. For the one-hop multicast
problem, our lower bound is a closed-form expression that
provides insight on the best-case behavior of the queue length
as a function of the number of multicast receivers and the link
loss probability. For multicast in a general erasure network, our
lower bound relates the minimum achievable queue length to
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the minimum-cut capacity of the network. Lastly, our upper
bound on the queue length for a packet coding strategy allows
us to conclude that for the one-hop multicast problem, random
linear coding is order-optimal with respect to the number of
multicast receivers.

II. T HE PROBLEM

We consider the problem of multicast transmission of data
packets from a single transmitter to a group ofM receivers.
We model a single multicast flow in which packets arrive at
the transmitter or source node according to a Bernoulli process
with rateλ. At other nodes in the network, a transmitted packet
is received with some fixed probability, independent of other
receivers and of past receptions. Our goal is to characterize
the expected number of packets queued in the network in
the steady state, and to devise a transmission scheme that
minimizes this average queue backlog, thereby minimizing the
queueing delay.

λ

Fig. 1. Queueing system for one-hop multicast.

Most of our work in this paper focuses on the one-hop mul-
ticast problem, in which each of theM receivers is connected
to the source by a single link, as shown in Figure 1. In this
problem, there is a single queue of packets and the transmitter
makes a transmission in every time slot. Each receiver receives
a transmitted packet with probabilityq. Even for the simple
one-hop multicast problem, minimizing expected queue length
is deceptively difficult. To see why this is the case, first
consider the simple scheme that retransmits the head of line
packet until it has been received by allM receivers. As shown
in [7], the expected number of time slots that a packet stays
at the head of the queue is greater than or equal to

ln(M + 1) + 0.3

− ln(1− q)
. (1)

Therefore, this scheme cannot stabilize arrival rates satisfying

λ >
− ln(1− q)

ln(M + 1) + 0.3
. (2)

This means that the expected queue length becomes arbitrarily
large for arrival rates approaching some value greater than
the right-hand side of (2). In other words, for anyλ, one
can chooseM sufficiently large so that the expected queue
length under the retransmission strategy is arbitrarily far from
optimal.

We could instead approach the problem of minimizing
expected queue length as a purely control theoretic problem.
Rather than simply transmitting the head of line packet, in each
time slot any packet in the queue can be transmitted. When
the state of each channel connecting the transmitter to each
receiver is known before transmitting a packet, a controller

would use this information, together with the reception history
of each packet in the queue to decide which packet to send
next. The complexity and information requirements of such a
scheme are clearly very high. On the other hand, without chan-
nel state information, throughput of such a scheme is no better
than the throughput of the simple retransmission scheme. To
see why this is true, if the system is ignorant of the channel
states before transmitting a packet, the expected number of
times a packet must be transmitted before successful reception
still must be greater than or equal to (1), even if transmissions
are attempted out of order.

For the one-hop multicast problem, it is well known that
the queue can be stabilized for all arrival rates satisfying
λ < q using simple random linear coding schemes (see
[8], for example). These schemes operate by collecting large
blocks of packets in the queue, then transmitting encoded
packets formed from this block until all receivers can decode
all packets in the block. To stabilize ratesλ approachingq,
arbitrarily large blocks of packets must be formed. The block
coding operation must create a backlog that grows with the
size of the block. So, it seems that schemes that code over
fixed-length blocks of packets are not well suited for the
problem of minimizing expected backlog.

III. M AIN RESULTS

In this paper we establish the following results about the
expected steady state queue length for multicast.

• We show that for the one-hop multicast problem, the
expected steady-state queue length of any strategy must
satisfy

lim inf
t→∞

E[Q(t)] ≥
3

4

(
λ ln(M)− 1

− ln(1− q)

)
,

whereQ(t) is the number of packets in the source queue
at time t. This is true even for strategies that exploit
channel state information.

• Using the same techniques, we establish a lower bound
on the expected steady-state queue length for a general
erasure network, where multicast receivers may be lo-
cated multiple hops away from the source and packets
may be queued at intermediate nodes in the network. This
lower bound relates the queue length to the minimum-cut
capacity of the network.

• For the one-hop multicast problem, we show the queue
length process of a simple random linear coding scheme
(at packet departure times) satisfies

lim sup
n→∞

1

n+ 1

n∑

k=0

E[Q(tk)] ≤

4 ln(M)

(
λ

q − λ

)2

+
(
8
√
ln(M) + 6

) λ

q − λ
.

Here, tn is the time at which then-th block of packets
departs the system.

So, if the queue length process at departure times corresponds
to the true queue length process, then for the one-hop multicast
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problem, the expected queue length of the random linear
coding strategy is order optimal with respect to the number
of receivers.

A. Lower bounds on achievable backlog for one-hop multicast

Here we present a lower bound on the minimum achievable
steady state expected queue length for one-hop multicast.
Specifically, we show that backlog must scale at least logarith-
mically with M , the number of receivers. In Section III-C, we
show that the backlog of the code over queue contents strategy
scales logarithmically withM . This implies that coding over
the queue contents is order-optimal with respect to the number
of receivers for one-hop multicast. The theorem that will be
proved in this section is the following:

Theorem 1: Under any strategy

lim inf
t→∞

E[Q(t)] ≥
3

4

(
λ ln(M)− 1

− ln(1− q)

)
.

The proof of this theorem is at the end of this section, after
several supporting lemmas are established.

The lower bound presented in this section makes very few
assumptions on the strategy used. We will start by stating these
assumptions in words, then give a more precise condition that
must be satisfied by all policies.

To make the motivation for our assumptions clear, first
consider a system composed of a single transmitter and a
single receiver. Packets arrive at the transmitter according to a
Bernoulli process with rateλ. In each time slot the transmitter
is connected to the receiver with probabilityq, independent of
past connections.

Various strategies could be used to transmit packets to the
receiver. Regardless of the strategy used, we always assume
that the system possesses several properties:

(1) At any time, the total number of packets that have been
removed from the queue does not exceed the total number
of packets that have entered the queue.

(2) At any time, the total number of packets that have been
removed from the queue does not exceed the total number
of time slots where the transmitter has been connected to
the receiver. So, even if coding is applied, we do not
consider schemes that compress packets. We can only
transmitm packets to the receiver if the transmitter and
receiver have been connected in at leastm time slots.

(3) Connections cannot be used to transmit future arrivals.
In other words, the strategy must becausal. We cannot
send information about a packet that has not yet arrived
in the queue.

(4) The queue starts out empty. Since we are concerned
with steady-state queue length, this is without loss of
generality.

To make these conditions precise, we’ll introduce some
notation. LetQ(t) be the length of the source queue at timet.

Let A(t) be the random variable withA(t) = 1 if there is an
arrival at time slott andA(t) = 0 otherwise. LetS(t) be the
random variable withS(t) = 1 if the receiver is connected at
time slot t andS(t) = 0 otherwise. Finally, letD(t) be the
number of departures from the queue at timet.

In terms ofA, D, andS, properties (1), (2), and (3) are
captured by the following condition. For allτ ≤ t, we require
thatD satisfies

t−1∑

k=0

D(k) ≤

τ−1∑

k=0

A(k) +

t−1∑

k=τ

S(k). (3)

Properties (1) and (2) imply this condition forτ = t andτ = 0,
respectively. Showing that property (3) implies this condition
for all other τ is a little less obvious. To show this, consider
the set of packets that arrived in the system during the interval
[0, t− 1]. We can partition this set into two setsA1 andA2,
whereA1 is the set of packets arriving in the interval[0, τ−1]
andA2 is the set of packets arriving in the interval[τ, t− 1].
The total number of departures in the interval[0, t−1] equals
the total number of packets fromA1 that depart the system
in the interval[0, t− 1] plus the total number of packets from
A2 that depart the system in the interval[0, t − 1]. The total
number of departures fromA1 is, by property (1), less than
or equal to the total number of packets inA1, which is

τ−1∑

k=0

A(k).

Since all packets inA2 arrived on or afterτ , property (3)
implies that no connection prior toτ can be used to serve a
packet inA2. This, together with property (2), implies that
the total number of departures fromA2 is less than or equal
to the total number of connections in the interval[τ, t − 1],
which is

t−1∑

k=τ

S(k).

Finally, summing these upper bounds on the number of
departures fromA1 andA2 gives (3).

Using property (3), we have the following lemma. This
Lemma is very similar to a well known result that obtains
a queue length process by applying a reflection mapping to a
netput process (see Proposition 6.3 in [2], for example).

Lemma 1: If Q(0) = 0, the queue length at timet satisfies

Q(t) ≥ max
t≥τ≥0

{
t−1∑

k=τ

(
A(k)− S(k)

)
}

for any service policy with departures satisfying (3). Moreover,
this inequality is tight when packets depart the queue as
services occur.

Proof: At any time t,

Q(t) =
t−1∑

k=0

(
A(k)−D(k)

)
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Since
t−1∑

k=0

D(k) ≤

τ−1∑

k=0

A(k) +

t−1∑

k=τ

S(k)

for all τ ∈ [0, t], the queue length satisfies

Q(t) ≥

t−1∑

k=0

A(k)−

τ−1∑

k=0

A(k)−

t−1∑

k=τ

S(k)

=

t−1∑

k=τ

(
A(k)− S(k)

)

for all τ ∈ [0, t]. Since this holds for allτ , clearly

Q(t) ≥ max
t≥τ≥0

{
t−1∑

k=τ

(
A(k)− S(k)

)
}

The fact that the inequality is tight if packets depart the
queue as services occur can be shown by induction. Since we
start withQ(0) = 0,

Q(1) = max{0, A(0)− S(0)}

= max
1≥τ

{
0∑

k=τ

(
A(k)− S(k)

)
}
.

Now supposeQ(t) satisfies

Q(t) = max
t≥τ≥0

{
t−1∑

k=τ

(
A(k)− S(k)

)
}
.

Then the queue length at timet+ 1 is

Q(t+ 1)= max{0, Q(t) +A(t)− S(t)}

= max

{
0, max

t≥τ≥0

{
t∑

k=τ

(
A(k)− S(k)

)
}}

= max
t+1≥τ≥0

{
t∑

k=τ

(
A(k)− S(k)

)
}
.

We will now extend these results to the multicast case. Let
Sj(t) be the random variable withSj(t) = 1 if the transmitter
is connected to thej-th receiver at time slott, andSj(t) = 0
otherwise. LetRj(t) be the number of packets received by
receiverj at timet. EachRj(t) must satisfy the property (3).
That is, for allτ ≤ t, the total number of packets received by
receiverj up to timet− 1 satisfies

t−1∑

k=0

Rj(k) ≤

τ−1∑

k=0

A(k) +

t−1∑

k=τ

Sj(k).

Also, since packets do not leave the queue until they have
been received by all receivers, the total number of departures
in the interval[0, t− 1] satisfies

t−1∑

k=0

D(k) ≤ min
j

{
t−1∑

k=0

Rj(k)

}

Under this condition alone, we can establish a lower bound on
the achievable expected queue backlog. The next lemma gives

a lower bound in terms of the expected value of the minimum
of binomial random variables.

Lemma 2: Let Q(t) be the queue length of the multicast
system at timet. Under any policy,

lim inf
t→∞

E[Q(t)] ≥ sup
n≥0

{λn− fM (n)},

where fM (n) is the expected minimum ofM independent
binomial random variables, each with parameters(q, n).

Proof: The total number of packets in the queue at time
t is

Q(t) =

t−1∑

k=0

A(k)−

t−1∑

k=0

D(k).

Note that for allt ≥ τ ≥ 0,
t−1∑

k=0

D(k) ≤ min
j

{
t−1∑

k=0

Rj(k)

}

≤

τ−1∑

k=0

A(k) + min
j

{
t−1∑

k=τ

Sj(k)

}
.

By Lemma 1,Q(t) satisfies

Q(t) ≥ max
t≥τ≥0

{
t−1∑

k=τ

A(k)−min
j

{
t−1∑

k=τ

Sj(k)

}}
.

By Jensen’s inequality,

E[Q(t)]

≥ E

[
max
t≥τ≥0

{
t−1∑

k=τ

A(k)−min
j

{
t−1∑

k=τ

Sj(k)

}}]

≥ max
t≥τ≥0

{
E

[
t−1∑

k=τ

A(k)−min
j

{
t−1∑

k=τ

Sj(k)

}]}

= max
t≥τ≥0

{λ(t− τ)− fM (t− τ)}

= max
t≥n≥0

{λn− fM (n)}

wherefM (n) is the expected minimum ofM independent bi-
nomial random variables, each with parameters(q, n). Finally,

lim inf
t→∞

E[Q(t)] ≥ lim
t→∞

(
max
t≥n≥0

{λn− fM (n)}

)

= sup
n≥0

{λn− fM (n)} .

The following Lemma is used in the proof of Theorem 1.

Lemma 3: For all x ≥ a > 0,
(
1−

a

x

)x

≤ e−a



5

Proof: It is well known that

lim
x→∞

(
1−

a

x

)x

= e−a.

In the remainder of the proof, we will show that
(
1− a

x

)x
is

monotonically increasing forx ≥ a.
Taking the derivative yields

d

dx

(
1−

a

x

)x

=
(
1−

a

x

)x
(
ln
(
1−

a

x

)
+

a

x− a

)
.

The logarithmic part can be rewritten as

ln
(
1−

a

x

)
= − ln

(
x

x− a

)

= − ln

(
x− a+ a

x− a

)

= − ln

(
1 +

a

x− a

)
.

For all z ≥ 0, clearly z ≥ ln(1 + z). So,

a

x− a
− ln

(
1 +

a

x− a

)
≥ 0

for all x ≥ a. Also,
(
1−

a

x

)x

≥ 0

for all x ≥ a. So,

d

dx

(
1−

a

x

)x

≥ 0

for all x ≥ a.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: By Lemma 2, for anyn ≥ 0,

lim inf
t→∞

E[Q(t)] ≥ λn− fM (n),

where
fM (n) = E[min{X1, . . . , XM}],

is the expected minimum ofM independent binomial random
variablesX1, . . . , XM each with parameters(q, n).

Let

n̂(M) =
3

4

(
ln(M)

− ln(1− q)

)
.

The proof will proceed by showing that

fM (n̂(M)) ≤
3

4

(
1

− ln(1− q)

)
(4)

for all M ≥ 1. Therefore, for allM ≥ 1 we will have the
lower bound

λn̂(M)− fM (n̂(M)) ≥
3

4

(
λ ln(M)− 1

− ln(1− q)

)
.

Note that the largest value taken by any(q, n) binomial
random variable isn. To show (4), we will use the upper
bound

E[min{X1, . . . , XM}] =

n∑

x=1

xP(min{X1, . . . , XM}=x)

≤

n∑

x=1

nP(min{X1, . . . , XM}=x)

= nP(min{X1, . . . , XM} > 0).

It is the case thatmin{X1, . . . , XM} > 0 if and only ifXi > 0
for all i. The eventXi > 0 occurs with probability1−(1−q)n.
SinceX1, . . . , XM are independent,

P(min{X1, . . . , XM} > 0)

= P(X1 > 0) · · ·P(XM > 0)

=
(
1− (1− q)n

)M

=
(
1− en ln(1−q)

)M
.

Using n = n̂(M) gives

1− en̂(M) ln(1−q) = 1− e−(3/4) ln(M)

= 1−M−3/4

= 1−
M1/4

M
.

SinceM1/4 ≤ M for M ≥ 1, we can use Lemma 3 to obtain

P(min{X1, . . . , XM} > 0) =

(
1−

M1/4

M

)M

≤ e−M1/4

.

To boundfM (n̂(M)),

fM (n̂(M)) ≤ n̂(M)P(min{X1, . . . , XM} > 0)

≤
3

4

(
ln(M)

− ln(1− q)

)
e−M1/4

=
3

4

(
1

− ln(1− q)

)
ln(M)e−M1/4

.

Note that

ln(M)e−M1/4

= eln(ln(M))e−M1/4

= e

(
ln(ln(M))−M1/4

)

Sincex1/2 ≥ ln(x) for x ≥ 0 and bothx1/2 and ln(x) are
monotonically increasing forx ≥ 0, M1/4 ≥ ln(ln(M)) for
all M ≥ 1. Therefore,ln(ln(M))−M1/4 ≤ 0 for all M ≥ 1,
or equivalentlyln(M)e−M1/4

≤ 1 for all M ≥ 1. So,

fM (n̂(M)) ≤
3

4

(
1

− ln(1− q)

)

for all M ≥ 1, giving the bound

lim inf
t→∞

E[Q(t)] ≥ λn̂(M)− fM (n̂(M))

≥
3

4

(
λ ln(M)− 1

− ln(1− q)

)
.

�
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Another interpretation of the bound presented here relates
to the response time of a parallel fork-join queue as described
in [3]. The fork-join queue is a model employed for parallel
processing systems in which an arriving job or customer
is directed toM parallel, independent servers and service
completion can only take place when allM servers have
completed the task. In [3] results for a continuous-time fork-
join queue are presented and it is shown that the average
response time (or waiting time in the queue) isO(ln(M)).
The multicast problem we consider in this work might also
be modeled as a fork-join queue in which each parallel
server represents the process of transmission to one of theM
destination nodes. By Little’s Law, the average queue length
is equal toλ times the average response time, so our result
that the average queue length scales logarithmically withM
is supported by the previous results on fork-join queues.

B. Lower bounds on achievable backlog for general erasure
networks

To provide further insight on our bound on achievable back-
log for the one-hop multicast problem, we next develop similar
results for the generalized problem of anerasure network. This
network is described by an acyclic directed graphG = (V,E)
with source vertexs andM terminal verticest1, . . . , tM . Time
is slotted and in each time slot, edge(i, j) ∈ E is connected
with probabilityqij , independent of other edges and past edge
connections. An attempted packet transmission from nodei
to node j is successful in a given time slot if edge(i, j)
is connected. In the model we consider here, data packets
are produced at the source vertex according to a Bernoulli
process with rateλ, and each packet must be multicast to all
terminal vertices. This model incorporates the broadcast nature
of wireless networks, since packets transmitted by a node are
heard by all neighboring nodes. However, this model assumes
that multiple, distinct packets might be received by a node in
a given time slot. Also, here we assume all successful packet
transmissions are acknowledged by the receiving nodes, and
acknowledgments are sent error-free.

Due to time-varying link connectivity and contention for
link access, packets may be queued at multiple network nodes.
Various strategies can be used for routing packets through the
network, scheduling link access at the nodes, and possibly
coding among packets in the network. Under any possible
strategy, what is the smallest expected queue backlog we can
accumulate at all network nodes? Here we outline a framework
for analyzing this limit of achievable queue backlog in erasure
networks.

The characterization of erasure network capacity considers
the capacity across anycut in the network. A cut is a partition
of the vertex set of the network into two complimentary
subsets, denoted asVc and Vc, where s ∈ Vc and ti ∈ Vc

for some terminal vertexti. We let C denote the set of all
cuts in the network. The set of edges contained in a cut is
Ec = {(i, j) ∈ E|i ∈ Vc, j ∈ Vc}. Finally, we let thefrontier
of the cut be the set of vertices

Fc = { i ∈ Vc | (i, j) ∈ Ec for somej ∈ Vc }.

s

t1

t2

Fig. 2. Simple multicast network and a cut separating the sourcefrom each
terminal.

The capacity of the cutc is given by

∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(1− qij)




This gives the maximum rate which packets can be transmitted
across the cut. At best, packets can be transmitted simultane-
ously from each vertex on the frontier, leading to the sum
in this expression. For each vertex in the frontier, only one
edge needs to be connected to transmit a packet in a given
time slot, leading to the product in this expression. Since all
packets traveling from the source to some terminal must cross
this cut, the capacity of the cut gives an upper bound on the
source rates that can be stably supported by the network. It is
also known that the minimum capacity over all cuts is exactly
the maximum source rate that can be stably supported [9].

Let A(k) andD(k) denote the number of packets entering
and departing the network in time slotk. The total number of
packets queued in the network at time slott is

Q(t) =

t−1∑

k=0

A(k)−

t−1∑

k=0

D(k).

Let S(i,j)(t) be a random variable withS(i,j)(t) = 1 if edge
(i, j) is connected in time slott, andS(i,j)(t) = 0 otherwise.
We can bound the total number of departures in any interval
by considering the connectivity of links crossing any cut. For
any cutc and any timest1 ≤ t2,

t2−1∑

k=0

D(k) ≤

t1−1∑

k=0

A(k)+

t2−1∑

k=t1

∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(
1− S(i,j)(k)

)



(5)
To understand where this bound comes from, suppose we
start with Q(0) = 0. The total number of departures in
the interval [0, t1 − 1] cannot be any greater than the total
number of arrivals in this interval. Of the remaining packets
arriving in the interval[t1, t2 − 1], the total number of these
packets departing the network cannot be greater than the
total number of connections crossing any cut in the interval
[t1, t2− 1]. Summing these bounds for the intervals[0, t1− 1]
and [t1, t2 − 1] gives the bound (5). For a network composed
of a single source-terminal pair and a single link, this bound
is tight.
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Fig. 3. Lower bound on achievable backlog for the simple multicast network
with q = 0.75.

Using the bound (5),

Q(t2) =

t2−1∑

k=0

A(k)−

t2−1∑

k=0

D(k)

≥

t2−1∑

k=t1


A(k)−

∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(
1− S(i,j)(k)

)





Since this holds for all timest1 and all cutsc,

Q(t2) ≥ max
c,t1





t2−1∑

k=t1


A(k)−

∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(
1− S(i,j)(k)

)








In the case of Bernoulli arrivals and Bernoulli link connec-
tivities, the argument of the maximum is simply a linear
combination of binomial random variables. That is,

Zn =

t−1∑

k=t−n

A(k)

is a binomial random variable with parametersn andλ. For
eachi ∈ Fc,

Yc,i,n =

t−1∑

k=t−n


1−

∏

j:(i,j)∈Ec

(
1− S(i,j)(k)

)

 .

is a binomial random variable with parametersn and 1 −∏
j:(i,j)∈Ec

(1 − qij). Since the arrival and link connectivity
processes are memoryless, the joint probability mass function
of Zn and all of theYc,i,n is independent oft.

The steady-state expected backlog is lower bounded as

lim inf
t→∞

E[Q(t)] ≥ E

[
sup

n≥0,c∈C

{
Zn −

∑

i∈Fc

Yc,i,n

}]
(6)

The random variablesZn −
∑

i∈Fc
Yc,i,n are fairly straight-

forward to analyze individually. However, the expectation of
their supremum, particularly since these random variables are
correlated, is significantly more difficult to analyze. As was
shown in the previous section, we have obtained analytical
results in a special case.

Here we will also show a simple network example where
a lower bound can be computed numerically. Consider the
network shown in Figure 2. A cut separating the sources from
terminalst1 andt2 is also shown in the figure. In this example
there are seven directed cuts separating the source from each

of the terminals. For the case whereqij = 0.75 for all edges,
a curve of the expected steady-state value of this lower bound
(computed by taking empirical averages) is shown in Figure 3.
This figure gives a lower bound on the steady state expected
number of packets queued in the network when packets enter
the network at vertexs according to a Bernoulli processes with
rateλ.

By applying Jensen’s inequality to the right-hand side of
(6), we establish the following lower bound on the expected
steady-state queue length.

lim inf
t→∞

E[Q(t)] ≥

sup
n≥0,c∈C



λn−

∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(1− qij)


n





This lower bound relates the queue length to the minimum-cut
capacity of the network. The lower bound can be made arbi-
trarily large, and hence the rateλ cannot be stably supported,
if there exists some cut with

λ >
∑

i∈Fc


1−

∏

j:(i,j)∈Ec

(1− qij)


 .

This condition is exactly the necessity part of the capacity
theorem for erasure networks [9].

C. Upper bound on queue length for random linear coding in
the one-hop multicast network

Now we will analyze the queue length for the one-hop
multicast problem under a simple random linear coding strat-
egy that we call ‘code over queue contents’. This strategy
sequentially performs rounds of encoding, each of which lasts
several time slots. When a round of encoding begins, all
packets in the queue are selected. LetC be the total number
of packets in the queue at the start of a round of encoding.
Encoded packets formed from random linear combinations of
these packetsC are then sent to the receivers. Any arrivals to
the queues during a round of encoding will not be considered
until the next round of encoding. The round of encoding ends
when all receivers can decode allC packets. TheseC packets
are removed from their queue, then the next round of encoding
begins.

Each encoded packet is a random linear combination of
the C packets in the current coding block and is formed in
the following way. A set of coefficientsai for i = 1, . . . , C
are randomly and uniformly chosen from the finite fieldFd

and these coefficients are used as weights in forming a linear
combination using addition and multiplication overFd. The
size of the finite fieldd is a power of two. A receiver can
recover the originalC packets once it has receivedC linearly
independent encoded packets. The results presented below
hold for any finite fieldFd with 2 ≤ d. The time to transmit
a coding block as well as the queue backlog are maximized
for d = 2 and this case is used in obtaining our upper bound.

As described above, we assume the use of random linear
codes, as introduced in [11]. For the one-hop multicast prob-
lem, digital fountain codes, such as Tornado codes introduced
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in [4], are also applicable and are known to be capacity-
achieving in the limit of large block sizes. Our results on the
queue length for packet coding do not directly apply when
fountain codes are used; this is because we allow for a variable
block size and the coding overhead that results for fountain
codes with small block sizes is not captured in our result.
However, similar techniques may be useful in analyzing the
queue length performance for digital fountain codes.

Recall thatQ(t) denotes the number of packets in the
queue at timet. The queue length processQ(t) generally
does not evolve as a Markov chain. This is because each
round of encoding lasts several time slots, and the distribution
of the length of a round of encoding is not memoryless.
Although the processQ(t) is not a Markov chain, the process
Q(t0), Q(t1), Q(t2), . . . is a Markov chain, wheret0, t1, t2, . . .
are the starting times of successive rounds of encoding. Thus,
we can apply tools for Markov chains to analyze the average
value of theembedded Markov chain Q(tn). This will provide
the steady-state average value of the queue backlog at the start
of each round of encoding.

Before presenting Theorem 2, the main result of this section,
we will state a general lemma that is used in its proof. A proof
of this lemma can be found in [5].

Lemma 4: LetX(t) be a Markov chain with countable state
spaceX . Let r : X → R be a cost associated with being in
each state inX , and leth : X → R+ be a nonnegative function
on X . Then

lim sup
n→∞

1

n+ 1

n∑

k=0

E[r(X(k))] ≤

sup
x∈X

{r(x) +E[h(X(t+ 1)) |X(t) = x]− h(x)} .

Theorem 2: The steady-state average of the embedded
Markov chainQ(tk) satisfies

lim sup
n→∞

1

n+ 1

n∑

k=0

E[Q(tk)] ≤

4 ln(M)

(
λ

q − λ

)2

+
(
8
√

ln(M) + 6
) λ

q − λ
.

Proof: Throughout this proof, we will letρ = λ/q denote
load factor associated with the queue. To prove the upper
bound, we will use the bound given in Lemma 4. Specifically,
we will use the function

h(x) =
2x

1− ρ
.

By applying Lemma 4 we get

x+E[h(Q(ti+1) |Q(ti) = x]−h(x) = x+
2(λE[T (x)]− x)

1− ρ

whereE[T (x)] denotes the expected time to transmit a coding
block containingx packets. By Theorem 2 in [8],

E[T (x)] ≤
1

q

(
x+ 2

√
(0.78x+ 3.37) ln(M) + 2.61

)
.

Using this bound onE[T (x)], we get the upper bound

x+E[h(Q(ti+1) |Q(ti) = x]− h(x) ≤
ρ(2α(x)− 1)− 1

1− ρ
x

(7)

where

α(x) =
x+ 2

√
(0.78x+ 3.37) ln(M) + 2.61

x
.

The value ofx ≥ 0 that maximizes (7) is

x = 4 ln(M)

(
ρ

1− ρ

)2

,

and the associated maximum is

4 ln(M)

(
ρ

1− ρ

)2

+
(
8
√
ln(M) + 6

) ρ

1− ρ
.

This theorem shows that the average queue length at departure
times for the ‘code over queue contents’ strategy scales as
O(ln(M)).

IV. CONCLUSIONS

In this paper we considered a simple multicast model, where
a single transmitter sends packets toM receivers over lossy
links. The transmitter is equipped with a queue, and our goal
was to find a transmission strategy that minimizes the expected
number of packets in the queue. While finding the queue
length minimizing strategy is still an open problem, here we
found a lower bound on achievable performance and an upper
bound on the performance for a random linear coding strategy.
Specifically, we have shown that queue length must scale as
Ω(ln(M)), and that queue length under the random linear
coding strategy scales asO(ln(M)). Hence, the random linear
coding strategy is order-optimal with respect to the number of
receivers.

In addition to our analysis for the one-hop multicast model,
we provided a framework for analyzing multicast in more
general erasure networks. This framework provides a method
for lower bounding the minimum achievable total queue back-
log throughout a network. Here we have shown an example
where a lower bound on achievable backlog was computed
numerically for a two-hop network.
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